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Characterization of free fall
paths by a global or local
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Abstract. Usually, the paths of free particles in classical mechanics, special relativity,
or general relativity are defined by stating that there exist coordinate systems, in which
these paths globally or locally obey linear equations. Here, a coordinate-independent
characterization of these paths solely by elementary and operative incidence properties
is given. It is shown that in 2 dimensions the Pappus figure (with 9 paths and 9 inci-
dence points), and in 3 and more dimensions the Desargues figure (with 10 paths and
10 points) are the simplest possible incidence figures for characterizing the straight
paths of an inertial structure. For the case of general relativity, a suitable local modi-
fication of the Desargues property is formulated: In every e-neighbourhood of every
point, the incidence points and the connecting paths of the Desargues figure exist up to
corrections of order €* . It is then proven that this local Desargues property uniquely
characterizes the (projective) geodesics of general relativity.

1. INTRODUCTION

The paths of «free particles» constitute the basis (the kinematic frame) for all of
physics, as is especially evident from the foundations of classical mechanics, special
relativity, and general relativity. Usually, these paths are introduced by stating that there
exist (global or local) coordinate systems {z°} and parametrizations 7 such that all of
these paths z°(7) obey the differential equation %%1 = 0 . It should, however, be clear
that such a coordinate-dependent characterization of the basis elements of physics is in
no way satisfying, and it does not give any intuitive information about the characteristic
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inner structure of this manifold of paths, e.g. in contrast to the paths of charged particles
in an electromagnetic field. The dissatisfaction with this situation is masterly expressed
by Einstein [1]: «I quote Galilei’s law of inertia as an example (for the mixing of state-
ments about the means of description and statements about the object to be described). 1t
reads in dctailed formulation necessarily as follows: Matter points, that are sufficiently
separated from each other, move uniformly in a straight line — provided that the motion
is related to a suitably moving coordinate system and that the time is suitably defined.
Who does not feel the painfulness of such a formulation? But omitting the postscript
would imply a dishonesty». (Our translation). Even a formally covariant characteriza-
tion of free fall paths by T°V T® = 0 with T° = % does not contribute very much
to a (geometric) comprehension of this path structure. In some, cven modem textbooks
on classical mechanics the lack of clarification of these basic clements of physics has
the conscquence that the introduction of «free particles» and the formulation of Galilei’s
law of inertia come near to a vicious circle.

In order to avoid this danger of circulanty, the safest way is to reduce, at least in
principle, all statements to the most pnmitive, experimentally decidable facts, and these
seem to be space-time coincidences (events). Historically, the necessity for such a reduc-
tion was first stressed in 1915-1916 by Kretschmann [2] and Einstein [3], in the sequel
of Einstein’s painful wavering between only partly and fully covariant formulations of
a relativistic gravitation theory: «Reality is nothing but the totality of spacc-time point
coincidences» [4]. Concemning the free fall paths and Galilei’s principle of incrtia, this
poses the natural question: what is the minimal number of particle paths and points of
intersection between them, that allows to characterize uniquely the free fall paths, in dis-
tinction from other path structures? In starting this analysis, we have in mind at first the
paths of free particles in a 2-dimensional (plane) gravitation-free region, i.c. the glob-
ally straight paths of classical mechanics. However, it turns out that this analysis and
its results transform in a natural way and nearly unchanged to an n-dimensional space,
respectively spacetime, and also to the local characterization of free particles in general
relativity.

In order to discriminate between different types of paths (c.g. «straight» and
«curved» paths) it is necessary to consider at least 3 points on each of them. In or-
der that these points help to formulate some characteristic (lawful) properties of paths,
the points have 1o be defined not only by the (incvitable) crossing of 2 paths but by the
crossing of at least 3 paths. (Duality between paths and points!) The simplest «figure»
of this type is casily seen to consist of 7 paths and 7 points, and it is well known in geom-
etry as the simplest example of a finite projective plane, the so-called Fano configuration
[5]. However, a realization of such a figure is possible only in an abstract «planc» over
a field of characteristic 2, and not in the «physical» continuous and ordcred planc. A
similar situation occurs for the figure with 8 paths and 8 (nontrivial) points.

The simplest generic «confined configuration», that is realizable in the normal plane
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consists of 9 paths and 9 points, and is known from ancient times as the Pappus figure
(fig. 1): Ifthe vertices A, B, A", B', A", B" of a plane hexagon lie alternately
on two lines, then the pairs of opposite sides meet in collinear points e, , e, , €;.
We consider it a most remarkable fact (albeit it is mentioned nowhere in the physics
literature) that this mathematically simplest nontrivial coincidence figure allows, at least
in the plane, to characterize uniquely the simplest possible paths for physical bodies, the
free fall paths, as was first shown by Hilbert [6]: From the purely geometric properties of
the Pappus figure together with the parallel axiom, Hilbert developed a coordinatization
of the plane (Streckenrechnung) that obeys all laws of the real number field, and in
which the basic paths fulfil linear equations (are straight lines). Nevertheless, the Pappus
theorem is not sufficient to «construct» the physical space-time, because this theorem is
not generalizable in a natural way to more than 2 dimensions.

In order to build up the inertial structure of the 4-dimensional (or higher dimensional)
space-time from an incidence structure, the simplest possibility is provided by the sec-
ond fundamental theorem of projective gecometry, the Desargues theorem with 10 paths
and 10 (nontrivial) points (fig. 2): Iftwo triangles (A, A", A" and B, B', B" ) are per-
spective from a point O, they are perspective from a line (corresponding triangle sides
meet in collinear points (e, e,, ey) ). On the one hand, this theorem (in the plane) is
a necessary and sufficient condition for embedding this plane into a higher-dimensional
space [6], on the other hand also the Desargues property of a path structure allows, to-
gether with the paraliel axiom, to develop a coordinatization in which the basic paths
are straight [6]. Therefore, the Desargues theorem represents the simplest procedure to
characterize in an operative way an inertial frame in 3 and more dimensions on the basis
of (free particle) paths and their intersections.

Fig. 1. The Pappus figure for straight lines in the plane.
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Fig. 2. The Desargues figure, here illustrated for the projective geodesics of general relativity,

in two or three dimensions..

The success and the simplicity of this characterization of the inertial structures of
classical mechanics and special relativity suggest now to look for a generalization of
this procedure to general relativity, a theory that likewise can be built on (particle and
light) paths and their intersection points (events) as basic elements. The only global cle-
ment in the above analysis was the parallel axiom; it has to be and will be discarded in the
following analysis of the local theory «general relativity». A «reduction» of the Ricman-
nian geometry of general relativity to the more elementary projective structure (of the
free fall paths) and conformal structure (of light paths) goes back to the work of H. Weyl
[7]. However, an axiomatic foundation of these structures dircctly upon the free fall
paths and the light rays, without presupposing a metric structurce, was not successfully
worked out before the seminal paper of Ehlers, Pirani and Schild [8]. Herein, the con-
formal structurc is based solely on incidence propertics of light rays with an (arbitrary)
particle path, and on topological conncctivity propertics (of manifolds of light rays). The
conformal «metric» g,,(z¢) , derived therefrom up to a gauge factor €2( z€) , can then
in principle be constructed locally, in a given coordinate system, by 9 light rays. In con-
trast, the projective structure was defined in (8] by the standard coordinate-dependent

ropert é—zr— = 0, and not by incidence properties or other clementary and operative
property = y prop: Y [

facts about free fall paths.

In subscquent publications by the samc authors |9, 10], the goal of a reduction to more
elementary propertics was mentioned, but no systematic construction of this type was
presented. The first purely geometric and intuitive characterization of the free fall paths
of general relativity was given by Ehlers and Kohler [11]: The free fall path structure
is uniquely singled out among the general ones by admitting at cach point approximate
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symmetries that are induced by a dilatation, or equivalently by a transitive action in the
set of projective directions (i.e. by maximal local isotropy). This type of characterization
was later also formulated in the language of jet bundles [12], and it was shown [13]
that the degree of micro-isotropy of a path structure, that makes it compatible with the
conformal structure (according to [8]), is already sufficient to single out the free fall
paths. Although these descriptions of the free fall structure by local symmetry arguments
are coordinate-independent and geometrically intuitive, and may have their own merits,
we should like to argue that a characterization solely by incidence properties as given by
a Desargues-like theorem is more elementary and fits more natural into the scheme of a
projective structure and to the construction {8] of the conformal light cone structure (for
which a characterization solely by symmetry arguments seems not to be available).

In pursuing the goal to characterize the free fall paths of general relativity solely by
incidence properties, some years ago the following conjecture was formulated [14]:

THEOREM . A path structure is a free fall (or inertial) structure if and only if for any point
O of the manifold M an €, -neighbourhood can be found such that the path structure
obeys the Desargues property in order € . .

Here, M is an n-dimensional manifold with differential topology; a general path
structure is a set of paths (unparametrized, sufficiently smooth curves) in M such that
through every point of M and every direction at that point there passes exactly one
path. Fulfilment of the Desargues property in order 5(2) means that the intersection points
e,,€,,ey of figure 2 exist up to corrections of order €} , and that e, lics on the path
e,e, up to corrections of order € , for all Desargucs configurations which are confined
to the ¢,-neighbourhood of O.

That the free fall paths (projective geodesics) of general relativity fulfil this local
Desargues property, is easily seen: In an arbitrary coordinate system z%(a = 1,...,n)
inthe ¢,-neighbourhood of the origin O, a free fall path through P can be represented
by

(1.1) 1%(7) = z°(P) + Tu" + ;—71 T2(P)ub(P)us(P) + O(&)) ,

with ¢®(P) = %‘( P) ,and where z°( P) and the parameter T are of order ¢, . Ifthe
local inertial system at O is chosen, the projective connections fulfil T)2(0) = 0, and
T2(P) = O(ey) , if the T arc C'-functions . Together with 7 = O(¢,) , the third
term on the right hand sidc of (1.1) therefore is of order €5 , so that the general path in
order e% is given by the lincar cquation

(1) = 2*°(P) + Tu” .
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That such linear paths fulfil the Desargues property, is a standard result of projective ge-
omctry [5]. A proof for the reverse fact that the local Desargucs property uniquely leads
to the free fall paths of general relativity, was initiated in [14], but not completed in a
satisfying way. A complete proof will now be presented in the following. In sections
2 and 3, the special case will be considered that the dircctions of the paths p, p/, p” are
linearly dependent in O (see fig. 2). The existence of the intersection points e, e, , €4
inorder €} , duc to the Desargues theorem, guarantees that in this case the whole Desar-
gues configuration can be reduced in this order to a 2-dimensional submanifold. (This is
the so-called surface-forming property of the projective geodesics that played also a ma-
jorrole in [9] and [10].) As usual in projective gcometry, the situation in 2 dimensions
is special, and the most difficult to prove. In section 3, first a functional cquation for the
central «acccleration function» é( %) of the path structure is derived from the Desar-
gues property. Then it is proven, that solutions of this functional cquation necessarily
depend in a lincar or symmetrically bilincar form on the components of @ . However,
such dependences can be eliminated (B(%) be made identically zero) by suitable pa-
rameter and coordinate transformations. As a side-remark, we should like to point to the
noteworthy fact that the simplest acceleration (or force-) function K %( u?) that cannot
be eliminated in this way, and that obeys the local constancy of the light velocity in the
form K®u, = 0,isof the form K¢ = Feby, with an antisymmetric F9® and there-
fore is realized by the only fundamental long-range force in nature, electromagnetism.
In section 4, the proof for the general 3-dimensional respectively n-dimensional case is
given, which turns out to consist of a simple and more or less formal cxtension of the
2-dimensional results.

In connection with the central role of the Desargues theorem for the foundations of
classical mechanics, special relativity, and general relativity, that is the main objective
of this paper, we should like to add two more remarks: A nice example for the successful
application of the Desargues theorem (and the only one known to us from the physics
literature) is the construction of a «gcomcetrodynamic clock» (solely with the basic cle-
ments of the projective and conformal structure) by Castagnino [15], that considcrably
simplifies the original proposal by Marzke and Wheeler {16]. Finally, it scems notewor-
thy that the Desargues theorem supplics a simple construction of spacclike projective
geodesics solcly out of timelike ones, i.c. out of real free fall paths (and without the help
of light rays, as is otherwisc usual in the Einstein synchronization procedure): Already in
a 2-dimensional Minkowski diagram it casily can be scen that it is possible to choosc the
paths p,p/, p” and all the triangle sides of figurc 2 timcelike, but the path e e, e, space-
like, and to construct (in principle) all points of the path e, e, e, by suitably varying the
triangles.
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2. PREPARATIONS

2.1 Coordinate representation of the path structure

.In order to shorten the equations and to simplify the proof, in this paper only the 3-
dimensional case of Desargues’ construction will be carried out in detail. Some remarks
for the case of an n-dimensional manifold will be given in section 4.2. Because we may
carry out Desargues’ construction in the whole ¢, -neighbourhood of O, we can carry
it out in any e-neighbourhood with 0 < € < ¢, . In order to carry out Desargues’
construction, we have to intersect paths in an ¢, -neighbourhood. So we have to start
with the equation of such a path. With respect to any chart, the second degree Taylor
expansion of a path at a point Z, is

dr 1 ,d7

f('f) = f() + TE;(O) + ET d7'2

1 ,d%%
0) + g'r E;(@'r)

with® € [0, 1], and z representing a general 3-dimensional vector. Because a path is
determined by a point and the direction at this point, there exists an «acceleration field»
A(Z,, @) such that

1d°% -/, dz
5-377(0) —.A<I0,E;(O)> .

This acceleration field is not uniquely defined, because another parameter choice o(7)
produces another acceleration field. In the following, one special representative field
will be used. Because the path depends only on the direction at a point, and not on |4},
the acceleration field has the property

AT i) = M A(Z,6) foralld#0 .

A second degree Taylor expansion only makes sense if
ez d [ =/, az
ETT(GT) =2 e <A (I(T),a;('f)>> ()

exists. Therefore it is appropriate to require that BZ-A‘ and 66/1‘ exist.

Now we choose a preliminary chart by taking three paths of the path structure, that
intersect at a point (O, and whose tangential vectors are linearly independent at O . We
take these paths as axes of a chart. Because the axes are given by the equations

Z(r) = 1, + A0, T) + O(%) i=1,2,3

with @, = (u!,0,0),@, = (0,u*,0),d; = (0,0,u?), the acceleration field has the
property A‘(@, ;) =0 for % j . The scale on each axis can be chosen such that

A0, %) =0 forall i=1,2,3.
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Take now two points P, inan e-neighbourhood of O . Then there exists one unique
path, connecting P and @ . The equation of this path will now be derived. The equation
of a path, starting at P with velocity @ is

Z(ep) = Tp + €pli + €sz/i‘(fp,1f) +0O(e .
Because P licsinthe e-neighbourhood of O it follows

A(E,, %) = A0, @) + OCe).
With B(d) := A(0,©) we get

T(€p) = Ip+ €pu + czng(m +O(€) .
By demanding Z(e) = T; we get the equation

= - = 203 3

To—TIp=ei+ e B(D)+Ole) .

In order to solve this equation for @', take @' = @, + ety + .... Then we get

L Tg—Ip S -
g = =t = —D(1y).

Therefore, to sccond order, the cquation of a path through P and ) has the form

2.1 (ep) = Tp+ pv+ czp(DAl)B‘<U\+()(c‘)

€/

with ¥:= T5 7 and p restricted such that the curve doesn” tleave the e-neighbour-
hood of O.
5( «) has the following propertics:

(2.2) B(u,0,0) = B(0,u,0) = B(0,0,u) =0 forall ueR.

2.3) BOW) = X B(4) .

2.4) B is continuous .

(2.5) GJE(E) exists for all 7 € R® .

In order to describe Desargues’ construction, it is necessary to construct the intersection

of two gencral paths (if such an intersection exists at all). Given two paths

Flep) = Tpt pi+ Ep(p— HB(D) + O
P €

- , v
Ip+ov+ealo—-1NB(—)+ Otey
€

it

T(ea)
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intersection means

Zp+ pU+ ezp(p—])§< >

m|¢\1

v
€
=Tp + ov + 620(0 -DB (

) + 0(63) .

In order to solve this equation, expand p and o with respect to €
P=potep +...,0=0g+€x; +....

Then, the terms of order € give

(2.6) Tp+ po¥ = Tp + 0pv,

and the terms of order €2 give

-

LS - T L v
@7 P17 = 0197 = —pg(pg = DB(Z) + 0g(0g — DB(=) .

Obviously equation (2.6) cannot be solved for all T, Zp,, 7, v’ € R>. In order that
equation (2.7) for p; and o, can be solved, the function B has to fulfil appropriate
conditions to which we come back in scction 2.2, If these equations can be solved, the
point of intersection of order € is

- - . = (T
(2.8) Timers = £p + (pg + €p) T+ €2 p(py — DB <;> +0(e?) .

2.2 Construction of a 2-dimensional subspace

If we take two paths p and p’ , which intersect at one point O , Desargues’ construc-
tion can be used to define a surface. This surface is defined by the following property:
any point of the surface can be rcached by a path connecting a point on the path p and
another point on the path p’ . Then Desargues property requires that this surface really
1s a 2-dimensional subspace.

1f the Desargues property holds for a given path structure, we can choose in particular

p as zl-axis, and p' as z?-axis. On these paths we choose the points

A=¢1,0,0), B=¢e(—1,0,0)
A =€«0,0,0), B =¢0,1,0)
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with a € R und 0 < ¢y - The intersection point of A4" and '3 must exist.

€ <
According to cquation (2.6) we have then in order ¢

1 —pg =0
apy =1 1-0
0 0
Therefore we get
2 1 -
= and =
=13 SRR

According to cquation (2.7) we have in order ¢*

1
a |+ polpy — DB(~1,0,0) =

1
(4»1 g, + 0p(ay — DB(—1.-1,0)

The third component of this equation yields

B*(—=1,a,0) = —aB*(~1,-1,0) = —a const .
With ecquation (2.3) we get
(2.9) B’(u',u?,0) =TY u'u?  with T} = const

Herewith it can be shown that the coordinates of a point £ that lics in the surface P, , |
which is defined by the z'-axis and the z?-axis , have the form

(2.10) Z=(z', 2%, T} o'z*)

We can use the properties (2.9) and (2.10) to simplify the equation of a path connecting
two points of order ¢ that lic in the surface P, , . To this end we change the chart (in a
way that lcaves invariant the axes).

1 1 2 2
T

3 ;
=2 - rézlzz .
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In this chart, the equation of a path through two points P,Q (order e€) of the surface
Pl 2 is
| B'(£,2£,0)
- — — /1 v
2.11) z'(ep) = 2'p + pv’ + czp(p—l) B (L L& 0) | + 0

c’(’

0

Proof The equation of a path through the two points P and @ is
(2.12) Z(€p) = Tp+ pU+e p(p—l)B< >+O(e )

with 7= Z, — p . Because ¥'= (v',v%,0) + O(e?) and B is differentiable we get

— 1 2 1 2
é(%)ﬂ?(“”%—o—) O(e)> (”?36- >+O(e).

If we insert this result into equation (2.12) it follows

1 2
Zp+ pU+Ep(p— DB <— — 0>+O(e3)
€

T(ep)

vlv?

Tp+ pi+ eplp—1) (13‘,132,1"132 >+O(c3).

Now we have to transform this equation.
2" (ep) = a'(ep)
% (ep) = 2% (ep)
2 (ep) = 23 (ep) — F13221(ep)xz(€p)
= 1)+ p(zg - zp) + plp— DT
(le —z},)(zé —:c%,)
=Thlap+pzy —z3) + O()]
(23 + p(z5— 15) + O()] + O(€)
= IP Flzxpzp
+pl(zgy — T 2513) — (zp — Thapzp)] + O(E)
_1P+p[:1;Q—zP]+O(€ ) -

Because we use only the new chart in the following, the coordinates of it will again be
denoted by z'.
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3. PROOF IN 2 DIMENSIONS

3.1 Derivation of a functional equation

In this chapter we just regard points P, Q with :522 = z:}, = (), and paths through
these points. Because the third component of such a path is zero according 1o equation
(2.11), we can drop the third coordinate in this scction. A further simplification of this
equation can bc achieved by a suitable choice of the parameter. If v # 0, choose

vl o)
1)————Bz<""0/.

p=0—€olo ~ 3

v

This yiclds

I vl 2
(B -8 )+O(63)

1 .
T Sy ,
f(ep)=( f\+0 \+e‘o(o—1')
\zp )/ \vz

0

with 7' = Q- Zp . Define now

bul ul) = (B'(u' w200 — 5B u' w0 WP F0
’ ' iAulausz(ul,(),()) cut =0

According 1o the properties (2.2) ... (2.5) of B, b is continuous for all 7 and differen-
tiable for u? # 0 . Then the equation of a path is

1 1y piv o
f(cp)=<z§>+o(v \.+620(O—1)( \"‘>\+O((3)4

2 \v? ) L0

We sece, that this cquation also holds for vi = 0. Becausc of B()\d) = /\35(17),
b(u? , u?) fulfils the following equation:

bOau!, du?) = A2b(ut, u?)
Definc:

g(z) :=b1,z2) .

, 2 R 12
b (v])Lg<i—l—>: ‘b<v7,%> (forv' #0)

2) g is continuous.

Then

3) j—g(z) exists (at least) for x # 0 .
T
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Now, the final equation of a path through the points P, Q of order € is in second order

Ep+ pi+ plp—1) (v)7 <’(§2f)> +0(}) ' #0

Tp+ pi+ O(€) wh =0

i(ep) =

—

In the following we carry out Desargues’ construction, in order to determine the func-
tion g .
It tums out to be sufficient to consider the following special case:

p: z! —axis; A=¢(1,0); B=¢-1,0

p 1 z? —axis; A =¢€(0,0); B =¢0,D
p” . path OA": A" =¢€(1,1); B"anywhere on OA" .

Because B” lies anywhere on OA” it has the coordinates

B"=¢(c,0) + €c(c— D(g(1),0) + O(Y), ceR.

Determination of e, by intersection of AA' and BB':

AA": T(ep) = € <1 "") +&p(p—1) ("('“)> + 0() .
ap 0

B'B: i(eq) = ¢ <1‘_UG> +a(o—1)+ (9(01)> + 0. .

Intersection yields

2 2(1 —a)
= 1+a+€(1+a)3(9(—0)+ag(1))+...,

o= l—a_£2a(1—a)
(3.1 " T+a (1+a)?

a-1
- _ | T 22a(1 —a) [ g(—a) —g(1) 3
el_e(%>+e (1+a)? <g(—a)+ag(1)>+o(€)'

o

(g{—=a)+ag()) +...,
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Determination of e, by intersection of AA" and BB :

.
AA"  Tep) =¢ (p) + 00 .

/‘l+(l+c,)o\

I — ’ 1)
BB" : T(eo) :e\ +czc(c—l)n\(g(()) !

co )

+ea(o—D[1+c+eg(cic— D}

(9<T+c+;o(7)> + 00

\ 0

Becausc of g(x + €h) = g(z) + O(e) (g is differentiable), it follows

1+ (1] 5
BB" : $(eo) :e( ( +C)U> +eocc - 1)y
co .

+ea(a— l)[l+c]z <g((1)7f))+0(e}).

Intersection yiclds

_ 2 +2“—C)< = (1+ag ! C Ve s
R P (1+¢)? cgth) = Cg\l+c)/)(
p=co
3.2) . 1
€) =€ 2¢ +
1+¢
22c(1l —¢) 0

X ]
- Lo+ O .
(1+¢)? <c(1+c)g(l)v(l+c>‘g(ﬁ)) ‘

Determination of ey by intersection of A'A" and B'B" :

1Al — p 2
: = + -
A'A"  T(ep) €'<a+(l—a)p> € plp

g(1 —a) 3
( 0 >+O(€).

Contt e co 2 /9(])>
: el fl
B'B": x(eo) —6(1 ( T >+e oc(c )\ 0

C

2 2 (9 (55 3
+EO’(U—])C< 0 /+O(f).
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Intersection yields

_c1—a) te o1 —a)(c——l)2

T 1_ac (1 —ac)?

(g(l —a) — (1 —ac)g(1) — acg (C;Cl—>> + ...,

_ 1—a+ (1 —a)(c-1)
" 1—ac ¢ (1 —ac)? ’

(3.3) c—1
<g(1—a)—(l~ac)g(1)—acg<——c—))+...,
L _ € o1 —-a) . zc(l—a)z(c—l)2
&3 T T "ac\a+c—2ac ¢ (1 —ac)? ’

£ c—1 -ac
(c_lg(l g( 1) — F2g(1 )>+O(€3)'

g(1 —a) —acg( 1) - (1 —aC)g(l)

Application of Desargues’ condition:
Desargues requires, that e; lies on the path through e, and e, . The path through
e, and e, has the equation

1=a 1
I(ep) =€e(1 — p) ( 2‘:“) + cp<£>
1+¢

2a(1 —a) (g(—a) -g(1) )
(1+a)3 \g(—a)+ag(l)

+eX(1 —p)
_ e 2¢(c-1) < 0 >
P+ o2 cg(l)—-(1+c)g(-1fr—c)
+€2p( _ g(l+c) 0 3
p—D——0 + 0(€) .
The condition is, that there exists a p = py + €p; + ... such that
€ = Z(epy + €0 +...).

2

This condition can be separated into order € and order € terms.

Cll a
_ ac
c ]P0 T | atc2ac ’
+ 1-ac

The equation of order ¢ is

et .
(1+o>(1_p0)+<
1+a

&=

—
o
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and has the solution

(I+)(1 —a)

Po = 2(1 — ac)

The equation of order €* is

__~.—a 1
( _zzﬂ>(—/31)“L <£>01
+a T+¢

2a(1 —a) —(a+ D(c=1 <g(—a) —g(1) )
(1+a)3 2(1 — ac) g(—a) + ag( 1)

2c(1—c)(1+c)(1—a) 0 °
(1+c)2 2(1 — ac) cg(l)—(1+c)g( C)

. 4 (1+)(a+ (1 —a)(c— 1) |+c
(1+a)? 4(1 — ac)?
_cl e D? (a0l —a) - 25905 - FeegD
(1 —ac)? g(l—a)—acg(c—cl)f—(l—ac)g(l) .

These arc two cquations for onc unknown p, . So, a solution only exists if these equa-
tions are lincarly dependent. This yields the following condition:

c 1 —02)9(1 —a)+ acz(c— D1+ a)g (C——>
¢

—_all — _
(3.4) a( ac)g( —a)

+(1 7ac)(]+a)c(l+c)g<-l—i—z> —(C—a)(l+c)g(cl—:—%)

=c(t+2a)(l —ac)g(l) .

This equation does not hold for all a,c € R. o, ¢must fulfil the following conditions:
First of all, g(x) might not be differentiable at z = 0. In deriving the equation of
a path through two points, we uscd the propenty g(z + eh) = g(z) + O(e) in somc
places. So we have 10 guarantee, that in these cases x % 0 . This yiclds the restrictions
c#0,c#1 and cFa.

Other restrictions result from the fact, that the points A, ... B
that the interscction points €,,¢e, and eq lic in the ¢, -ncighbourhood .

According to equations (3.1), (3.2) and (3.3) these points have the form

"

must be chosen such

g =¢ a; 2 b\

i ]_§+€(1—£)3

+0(,i=1,2
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(For example £ = ac for €3). a; and I;‘ depend on a and ¢, but are finite vectors.
In some expressions Es there appears ¢ in the form p2g( %) , which is not defined at
pw=0.But

A
lim“_,ouzg(;) =1lim,_ob(u,)) = b(0,3) = 0.

Now we havc to look for the restrictions on £ . It is clcar, that £ mustnotbe 1. If £ is
near to 1, that means £ = 1 — § (without any restrictions |8 < €, < 1), the expression
1—1? = % may increasc in such a way, that €; leaves the ¢,-neighbourhood . This can
be avoided by a suitable choice of € < ¢, : Choosc € = 67, then we get

€ = 6a,+ b, .

Choosing ¢ = 8% means the following: Onc takes an e-ncighbourhood within the
€g-neighbourhood . In that e-neighbourhood one carrics out Desargues’ construction.
Because the paths are nearly parallel, the intersection points leave the e-ncighbourhood
but they remain within the ¢, -neighbourhod .

We see therefore, that equation (3.4) holds forall a,c € R,except c=0,c=1,c=

a,a=-1,c= -1 and c= %

3.2 Solution of the functional equation

It is easy to sce that g(z) = g(1) = const fulfils equation (3.4). Now define:
f(l —x) :=g(x) —g(1).

Then f is continuous and differentiable for all z # 1. Equation (3.4) transforms to

0=c(1 —a®)f(a) + ac*(1+a)(c— 1) f <%>

1+
(3.5) —a(l—ac)f(1+a)—(c—a)(1+c)f<1+a>
C
i
+ (1 —ac)(l+a)c(1+c)f<——-> )
1+¢
This equation holds for all a,c € R except a= —1,c= —1,a=1a=cc=0 and

¢ = 1. But these restrictions can be dropped because f is continuous.

f(x) fulfils f(x) = 22 f(1).

Proof: a = ¢ inequation (3.5) yields

k(a) := f(a)—azf(%)=f(1+a)~(l+a)2f< : >

1+a
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k has the following propertics:

(3.6) k(14 a)=k(a).

3.7) k(1) = 0 . Thercfore k is continuous, because
hm, _ g, k(a)=lim _ k(l+a)=k(})=0.

(3.8) There exists M > 0 with |k(a)| < M forall a € R.

(3.9 kta) = —a?k ().

Insertion of @ = 1 into equation (3.5) leads 10

(! Ovof{ e Lpay e e 2
‘ \c o ¢ (l+c/l_772 - 2 \lvc/
Thercfore
3.10 ,:f'1>+(]+ )f’l —lf('z) Lr f/ -
(.10 —¢ a, ¢ ¢ <l+a)_2 V R k1+a/)
Insertion of ¢ =1 into ecquation (3.5) leads to
a 2 I+ a /1
_ 3 _
(.11 f””‘uaﬂ”a"uaf( 2 )7““\2,)'
Add equation (3.10) and equation (3.11)
a 1 2 1+ a
k(a) — k(1+a)= k(2 k I
(a) 1+a(+a) 2()+1+a ( >
With propertics (3.6) and (3.7) one gels
1+
Mm:2k<ﬁa>,
Therefore it holds
1+ (l+a) Q- " a
k(a):k(l+a)=2k(—(2~—>:2k(‘1+?>:2k(‘v2—

If onc applics this cquation n times one gets with property (3.9}

a

N an
k(a):Z"k(ﬁ>:72"(jn> k(7>.

This lcads to
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2

2 2mn
0 < |k(a)| = [lim —k(=)|< M - lim =— = 0.
n—oo 21 a n—oo 21

Therefore it holds k(o) = 0 and f(a) = a? f(1).

Using this property and once more the fundamental Desargues functional equation
(3.5), it is possible to prove f(z) = ez with a = const .

Define:
L2 forz 0

F(1-1):= {%1(0) for o = 0

F(z) := F(z) — F(2)

Then F' has the properties

(3.12) F(l-g)=F(1 -1 Fw=F(2).
(3.13) F is continuous.
(3.14) F(=0.

With f(z) = 2(F(1 — 1) + F(2)) and f(z) = 2 f (1), equation (3.5) reads

(c—a)F<C “> =ac(1 — a)F(1 —a) + ac(c— D F(1 — )

(3.15) T+ec
—a(l —a0)F(—a) + (1 —ac)F(—c¢) .

Because F is continuous, this equation holds for all a,c € R.
For ¢= 1 one gets

1—a

2

a(F(l-—a)—F(—a))=F< >-—F(—1).

Insertion of a = —1 into this equation yields F(—1) = F(2) = 0, and thercfore

. 1-¢ c—1
(3.16) C(F(l—C)—F('C))=F< 2 >=F<l+c>'

because of property (3.12).
For a = —1, equation (3.15) reads

(3.17) F(l—-c)+F(—c)=c(F(1—c)—F(c))=F<C1:l> .
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Subtraction of ( ]; (3.16) from (3.17) results in

’ 1 -~ 1
(3.18) 2F(0o) = Ku—)F(‘ )
c 1+¢
(3.19) Fia) = 2— <
1+(1 1+ o ] 1 (1‘
Ft ):_ e | T )
a—] 2 a (11 (u T 1
(3.20) = F(a) .
1+

Comparison of (3.19) with (3.20) yiclds
T a+1 a
2 a 1+a

Therefore one gets Fa) =0 and f(x) = ax with o = const .

Fla) = Fta) .

Resulr. Because of g{x) = f(1 — z) + ¢g( 1), we can write
gtx) =T 2 -1, (I, T, =const) .
Therefore, the cquation of a path through two points P, Q of order ¢ isin second order
Fyole? - T ()
Zep) = Tp+ pU+p(p—- 1) < iy 0 ( ) j + O

with ¢ = Tg -
Tac parameter transformation p= o+ o(o — DT, v' yields

. - a
Z(ep) =Tp+pv+plp—1) v'o? <r‘ > + Oty

"“he acceleration part can be climinated by the transformation

1 2 S 2
=2 T, 2'2? df =1 - r,a'z
(which leaves invariant the axes).
For the first coordinate we have

' ep) =1 (cp) - T 11 (ep)x-{ep)

=(zp - [xha3)
+p[(szr,$51é,) —(zh =T, 2ha0) ]+ Ot
—Tp+p(1Q—z,, Y+ O

With a similar proof for the second coordinate, the cquation of a path through the points
P,Q 1sin sccond order

T (ep) = fp+p(i7Q _5//’) + Oy
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4. EXTENSION TO HIGHER DIMENSIONS

4.1 Proof in 3 dimensions

‘We have proved up to now that there exists a chart K'S, , with the property that the
acceleration part of an equation of a path through a point P onthe z!-axis and a point
Q onthe z?-axis (both of order €) vanishes. That mecans the equation is

#(ep) = Tp + p(Eg — Tp) + O(€).

Equivalently there existcharts K'S, 3 and K S, 5 . Because the transformations, needed
toget KS,;,didn’ t change the axes of the charts, the transformation which transforms
KS, 5 into KS;, doesn’tchange the axes.
Let z* be the coordinates of XS, ,,

z" be the coordinates of K5, 5

then z* = ojz” + [, z72'* + ... is the transformation K S, ; — K5, , .

Because the transformation doesn’ t affect the axes, we have o} = 8} and [, = 0
fori# ;.

In KS, ; the equation of a path which passes through P = €(0,p',0) and Q =
€(0,0,q4") is

(4.1) 2'(ep) = €(0,p,0) + (0, —p', ¢") + O(€®) .

Therefore in KS, , the equation is

z'(ep) =" (ep) + Tyz” (ep)a™(ep)
=:z',", + p(x'é - z',‘;) + O(ea)
+ Thlzh+ p(zd ~ 23) + O(e))
[z'}’,‘ +p (a:gzc — a:'i',‘) + 0(63)]
=of + Tahalt
4.2) +pl(zh — T} zgzg) — (= + T, 23]
+p(p = DIj(d — 2 (zh - zf)
=zfp +p (zb — z},)
+p(p— DT} (zd — 2 (af — ) + O()
=z;, + p( za - z},)

+p(p— DT (2] — zh)(z§ — zh) + O()
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because of

T —Th = Ty — Th+ O(€) .
Finally the cquation of a path through P and @ in KS,, is

T(ep) =Tp+p U

[ I
+olp—1) v r233
\\ r23
()ﬁ 0
224 3,2 0
+ (v°) 2 1+ (v7)
) (F”

with

V=I5~ 2Ip= (0, —p' - rzlzp/zv‘ql - Tihg” )

The parameter transformation p= 0 — o( o — (v’ + T yields

1
5
— — . 2 3 fz . X
I(ep) = Ip+oU+ oto — 1vu oD
'
with
1 1
{173 7r23 ,
Iy |z Fa-Th
=3 3 2
I'; Iy -T5

In an equivalent way we sce, that the equation of a path which passes through a point P
(order € )onthe z'-axis and apoint Q (order €)on the z*-axis, has in sccond order
in KS;, the form

(3

-

o

ol
S5

f(cp)=fp+pt7+p(pAl)vlv3 + Oty .
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LEMMA 1. In a chart K, defined by the transformation

=1 —Tha's® - Tha? s

the equation of a path through two points P, () of order € on any axes has in second
order the form
T(ep) = Tp+ pladg—a'p) + O() .

Proof: First of all we sce, that the points £ with z3 = 0 are not affected by the
transformation, so it is clear that the equation of a path through a point on the z'-axis
and a point on the z2-axis is not affected by the transformation.

Now let us treat a path through a point P (order € ) on the z'-axis and a point Q
(order €) on the z3-axis.

Because the second component of the equation of this pathis in K'S, ;

z2(ep) = p(p— D' T + O(?) = O(e?),

the part rz‘s zz(ep)IS(cp) = O(€*) does not affect the transformation of this path.
Therefore the transformation of this path yields

1 (ep) =1 — T2 (ep) 2 (ep) + O(€3)
=I;, +p (xb — z},) +p(p— 1)1:1‘»3 (zb — x},)(zz — zi,)
— f‘]’s(x}, + p(zéz - z},) + 0(62))
(2} + p(zh — 23) + O(D)
+ O(e’)
=$’1", +p (z'c"2 - z';",) + O(e) .
The path through a point on the z? -axis and a point on the z3-axis can be treated
cquivalently. n

Finally we prove thatin K S} , the equation of a path through any two points P and
Q of order € is in second order

T(ep) = T p+ p(Tg~2'p) + O(€) .
In chapter 2 we derived that the general form of this equation is
T(ep) =T'p+ p(T'g — T'p)

+p(p— 15 (I—Q%f—”> + 0> .
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Duc the above Lemma, we sce that B has the following property in K81 :

5((),u2,u3) = é(u‘,o,tﬂ) = E(ttl,uz,()) =0,

for all u' u?, u® € R . Now we carry out Desargucs’ construction once again. We
choose
b avs
p: I -axis
p' @ z*-axis
p 2 -axis

and the points

A=e(-24",0,00, B=e-u"0,0

A =e0,u?,0), DB'= e((),%—,())

3

A" = €(0,0,-24), B"=¢e0,0,-=—) .

NI e

Intersection of AA' and BB’ :

AA" 2(ep) = [(=2u",0,0) + p(2u' u?, 0) e+ OCe’)

(4.3) i
BB : #(es) = [(—u',0,0) + o(u', 5 Ole+ O’y .

Intersection yiclds (p= -1, 0= -3 )
e, = (—4u', —u? O)e+ O()

Intersection of AA" and BB"

AA" Tep) = [(=2u",0,00 + p(2u', 0, =2ub)|e+ O

3

BB": #(e0) = [(—u',0,00 + o(u',0, — ) ]e+ Oe') .
Intersection yiclds ( p = —5— ,o=-2)
e, = (=3u',0,u})e+ O .

Intersection of A'A" and B'B"
A'A" L Fep) = [(0,6%,0) + p(0, —u®, =2u' ) e+ Oce')

2 2 3
B'B": #(eq) = {((),3;,()) + 0((),7%,f%~)|t+ OCedy
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Intersection yiclds (p= -2 , 0= -8 )
e3 = (0,3u? 4ud)e+ O(?) .

Application of the Desargues condition:
The path through e, and e, has the cquation

_4ul u1
— — ___u2 u2 2 1
#ep) =c{ 7 Tep| oy | te plp—1)

B](ul,uz,u3)
Bz(ul,u2,u3) +O(€3).
B3(u1,u2,u3)

If u2=0 then B=0 (alrcady proved). If u? % 0 then the parameter transformation

2.,V .2 .3
B (u',u”,u”)

p=c—eoc(o—1) 3

u

and the definitions B' := B' — % B? yield

_4y] u!
— 2 u2 2
I(ea) =¢ _(;‘ + €0 ;3 | +€a(a-1
U

B‘(ul,uz,ua)
N + 0 .
B3(u!,u? u?)

Now Desargues requires, that there exists a o such that €5 = Z(eo) . From the second
component it follows that ¢ = 4 . If we insert this result into the other components we
get Bl'= B3 = 0. Thercfore K S, represents a chart, in which the equation of a path
through O with any dircction fulfils, with a suitable choice of parameter,

&z

But this is the standard definition of a geodcsic path structure.

4.2 Remarks for the n-dimensional case

In this section no sum convention will be used.
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For an arbitrary n-dimensional manifold a 2 -dimensional subspace can be con-
structed in the same way as in section 2.2, In scction 3 it was proved that a chart A S
can be chosen, in which the equation of a path connecting a point P on the r' -axis

2

and a point Q onthe z? -axisinorder € has the form

(4.5) E(ep) = Tp+ p(Eg—Tp) + O()
where T is a general n-dimensional vector. Equivalently to calculations (4.1) and (4.2)

it can be shown that in K'§,, the equation of a path connecting a point £ on the
z'-axis and a point Q onthe z/-axis (1 < j < n ) hasin second order the form

I(ep)y = Tp+ pU+ plp— D'/ + Otet)

with v'= 7, — 7p.
In the chart K S, defined by the transformation

n
=1t — E r *rt ryh=0,
k<l

the equation of a path, connecting any two axes of the chart, has the form (4.5). (This is
the gencralization of Lemma 1.)

In order to prove with induction that in K5 ; the equation of any path connecting
two points in the e-ncighbourhood of O has the form (4.5), define the subspaces

P g ={Zld=0forjFi,...,u} k<n.

To prove that if for all 1,,...,7, < n the equation of a path connecting two points

PQeEPr of order € has the form (4.5), this also holds for a path connecting two
points P,Q € P .., Wecarry out Desargues’ construction once again. We choosc
the points
A=€0,... =2u",0,...,0,=2u"2,0,...,
0,-2u%1.0,..),
A =0, u 0,0,

and A" = €(0,..., =2u% 0,.. )
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and the paths p = OA,p' = OA’ and p”" = OA” . On p,p' and p” we choosc the
points

B=¢0,...,—u",0,...,0,—u"2,0,...,0, —u*1,0,..),
B' = €0 uw 0,..)
=¢e0,..., 30U
" _ 'l
and B"=¢(0,...,==—,0,..) .

The calculation then runs equivalently to equations (4.3) up to (4.4).
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NOTE ADDED IN PROOF

A correspondence with J. Ehlers showed that some points in this paper deserve clar-
ification:

a) In the Theorem (in the Introduction) we have to make explicit what it means that
two paths meet up to corrections of order €3 : We consider only path structures with
smoothness properties such that for any point 0 € M there exists a neighbourhood U,
in which the suitably parametrized paths through 0 induce a onc-to-onc exponcntial
map P = exp(v) betweenthe vectors v € T; and the points P € U, . With one of the
(equivalent) norms in T, we define €, = supp piegy, |lexp~!(P) — exp '(P")||. Then
two paths m,,m, in U, meet up to corrections of order € if their minimal distance
d = ming . lexp~1(Q,) — exp~1(Q,)|| fulfils d = O(X3) for ¢, — X,

and A - 0.

Qr€m, l

b) Inthe beginning of section 2.1 it is stated without proof that the acceleration field
A fulfils A( I, ) = XZA'(:E,E) forall X # 0. A more precise statement would be
that in the class of equivalent acceleration fields for a given path structure one can always
find a field with this property. This can be proven in the following way (an altemnative
proof in the language of jet bundles is given in [13]):

A path may be given as the trace of the curve F(7) , defined by the initial value
problem 7(0) = Z,,7(0) = & with ||e]| = 1, and & = 2A(Z,Z ), where - denotes
the derivative with respect to 7. However, because a path is alrcady uniquely defined
by a point and a dircction at this point, the curve ¢{ o), defined by the initial value
problem g(0) = Z,, §/(0) = A~'&=2"12(0) = 7, (o) = 2A(F,¢") (' denotes
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the derivative withrespect to o ) has the same trace as £(7) , i.¢. there exists a parameler
transformation o(7) such that ¢(o(7)) = Z(7) . Therefore £ = 7= §"3% + §'5 =
2A(§, 7V +§'5 = 2 A(Z, 1) . Evaluating this relationat 7 = 0 . it follows that there
exists a function f( £, v) with ||6]12 A(Z, , 7/||01) — A £, , T $Uf(L,, 00 . Thenthe
acceleration ficld A(7, 0) = ||7|2 ACZ, #/||A1]) fulfils ACZ,A0) = 2> A7, v) . and A
represcnts the same path structure as A, because the curve glo(7)) defined by y(0) =
Ty, 7(0) =7, " =2A(§,¢) and 0(0) = 0,5(0) =1, 6 = ~afiglo),av (o))
is identical to the curve £(7) defined by (0) = ©,,£(0) = ¢, T = 2A(L, D) .
We should like to thank J. Ehlers for his critical remarks.
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